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The excitation of Tollmien-Schlichting waves in low subsonic flat-plate boundary 
layers by sound is investigated theoretically. The problem is formulated mathematic- 
ally as an inhomogeneous boundary-value problem which is then solved by a Green’s- 
function technique. It is found that the amplitude of the excited Tollmien-Schlichting 
wave satisfies an inhomogeneous first-order differential equation. The calculated wave 
amplitude according to this equation exhibits spatial oscillations in the region ahead 
of the lower branch neutral stable point of the boundary layer. This characteristic 
feature resembles that observed experimentally by Shapiro (1977). The theoretical 
value of the coupling constant between incident sound wave and excited Tollmien- 
Schlichting wave agrees favourably with measured data. Other predictions of the 
theory also seem to compare well with available experimental measurements. 

1. Introduction 
Spangler & Wells (1968) and Knapp & Roache (1968) have shown experimentally 

that sound waves are an important contributing factor to early transition in wind- 
tunnel boundary-layer flows. It is generally believed that the observed early transition 
is the consequence of a sequence of events beginning with the excitation of unstable 
Tollmien-Schlichting waves by the imposed sound fields. The excited Tollmien- 
Schlichting waves amplify rapidly as they propagate downstream. When these waves 
attain sufficiently large amplitudes, ‘ breakdown’ occurs which eventually leads to 
turbulence. (The process of ‘ breakdown ’ are very complicated. Anew feature involving 
turbulent spots and Tollmien-Schlichting waves has recently been observed by 
Wygnanski, Haritonidis & Kaplan (1979).) This paper treats the first part of this early 
transition process, namely the excitation of Tollmien-Schlichting waves in low sub- 
sonic boundary-layer flows by acoustic disturbances. 

Classical hydrodynamic stability theory has largely overlooked the acoustic recep- 
tivity problem under consideration. Serious investigations began only in the last few 
years. The first theoretical treatment was published by Mack (1975) for the case of 
supersonic flow. Mack developed his theory mainly for the purpose of explaining and 
providing a reasonable estimate of the experimental observations of Kendall (1975) 
who studied the growth of supersonic boundary-layer instability waves in a wind 
tunnel. Unfortunately, Mack’s pioneering work is not applicable to subsonic flows. 
Furthermore, the forced excitation of instability waves was ignored in this work. In  a 
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recent review article on boundary-layer stability and transition, Reshotko (1976) 
briefly discussed various aspects of this problem as well as Mack’s theory. It was 
pointed out that receptivity phenomena of this kind differed physically and mathe- 
matically from the usual stability problem. The mathematical problem involved can 
no longer be formulated as an eigenvalue or normal-mode problem as in classical 
hydrodynamic-stability theory. Instead, the solution of an inhomogeneous boundary- 
value problem which describes the forced excitation of instability waves must be 
sought. A way of solving the inhomogeneous boundary-value receptivity problem was 
developed recently by the present author, Tam (1 978), in connection with the excita- 
tion of instability waves in two-dimensional shear layers by sound. In  this work the 
coupling constants between incident sound waves and excited instability waves over 
the whole range of unstable frequencies were calculated. It was shown how these 
coupling constants can be used to determine the amplitudes of induced instability 
waves under the influence of arbitrary incident sound fields. There are, however, two 
major differences between the acoustic receptivity problem for free shear flows and 
that for boundary layers. The first important difference arises because of the very 
distinct roles played by viscosity in the instabilities of these two classes of flows. A t  
moderately high Reynolds number, viscosity is non-essential to the instability of free 
shear flows. For stability consideration an inviscid analysis is generally regarded as 
adequate. Experimentally the results of inviscid theory have been found to be valid 
by Michalke (1965) and Freymuth (1966). On the other hand, it is well known that, 
contrary to common experience, viscosity is a destabilizing agent in laminar boundary- 
layer flows (see Lin 1966). In other words, unstable Tollmien-Schlichting waves 
exist solely because of viscosity. Thus for the boundary-layer acoustic receptivity 
phenomenon the interaction between nearly inviscid sound waves and viscous 
Tollmien-Schlichting waves throughout the flow must be accounted for in the 
formulation of the mathematical problem; whereas in the case of free shear flows a 
completely inviscid analysis will suffice. The second crucial difference lies in the 
presence of a solid wall in boundary-layer flows. Because of the wall all the incident 
sound waves are reflected back so that the physical problem is restricted to a semi- 
infinite domain. In contrast to this, when a beam of sound waves is aimed at a two- 
dimensional shear layer only a part of it is being reflected. A sizeable portion of the 
acoustic waves is transmitted through the layer. The domain of the problem is, there- 
fore,infinite, requiring the prescription of outgoing or boundedness condition far away 
from the shear layer in all directions. In  this paper the receptivity problem for 
boundary-layer flows will be formulated mathematically in 5 2. To solve the inhomo- 
geneous boundary-value problem, however, the method developed in our recent work 
will be used. 

Experimental study of acoustic receptivity characteristics of boundary layers is 
extremely difficult to perform. Among other things, the requirement of a controlled 
acoustic environment with only low levels of noise and free-stream turbulence and the 
near absence of standing acoustic waves in the test section is not easily attainable in a 
wind tunnel. In  addition, possible flow separation near the leading edge of the plate 
and early transition induced by side-wall turbulent boundary layers must be avoided. 
Recently, using a wind tunnel specifically designed to minimize these problems, 
Shapiro (1977) carefully carried out a series of acoustic receptivity measurements. 
These measurements were intended to shed light on possible excitation of Tollmien- 
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FIGURE 1. Spatial variation of measured wave amplitude, after Shapiro (1977). /l= 56 x lO-O, 
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FIGURE 2. Spatial variation of the phese of measured wave relative to the phese of the 
driving sine wave, after Shapiro (1977). 
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Schlichting waves and to study the characteristics of these waves under acoustic 
forcing. A flat-plate boundary layer forced by sound waves propagating in the direction 
of the free stream waa employed in the experiment. Unfortunately, the experimental 
results did not reveal the mechanism by which the sound waves were coupled to the 
instability waves of the flow. Yet the excited Tollmien-Schlichting waves did acquire 
sufficiently large amplitudes to be measured and ana.lysed. On the basis of his experi- 
mental results Shapiro found several important characteristics of the excitation pro- 
cess. Firstly, the measured disturbance amplitude (velocity component in the direction 
of free stream) exhibited spatial oscillation in a broad region of the boundary layer 
near the location which corresponded to the lower branch of the neutral stability curve. 
This is shown in figure 1. The wavelength of the spatial oscillations was approximately 
equal to the local Tollmien-Schlichting wavelength. In the region ahead of the neutral 
stable point, the phase of the measured velocity component also underwent spatial 
oscillations with similar wavelength as the amplitude. Figure 2 shows the actual 
measured data when the imposed sound level was 97 dB SPL at a frequency of 500 Hz. 
Beyond the neutral stable point the phase appeared to increase essentially linearly 
with distance but with superimposcd small-a,mplitude oscillations. Secondly, the 
spatial average of the velocity fluctuations in the region ahead of the neutral stable 
point (this is the value U,,, in figure 1) was observed to be nearly constant and was 
approximately equal to the velocity of the incident sound field. Although a closer 
examination would probably be required before this observation can be used to estimate 
mate the coupling constant between sound and Tollmien-Schlichting waves yet it 
does give a very useful measure of the strength of the type of interaction under 
consideration. Thirdly, when the excited Tollmien-Schlichting wave amplitude was 
sufficiently large the measured growth rate matched the theoretical predictions of the 
Orr-Sommerfeld equation (the eigenvalues). In addition, the measured (velocity) 
amplitude distribution of the disturbance agreed quite well with the predicted eigen- 
functions. This offered concrete evidence that the excited disturbances were induced 
Tollmien-Schlichting waves. 

In this paper the boundary-layer acoustic receptivity problem will be formulated in 
$2. The problem considered there is identical to Shapiro’s experiment, that is, a flat- 
plate boundary layer forced by plane acoustic waves propagating in the direction of 
the free-stream flow. This is done so as to allow a direct comparison between the 
present theory and Shapiro’s observations. A general formulation of the receptivity 
problem can, however, be carried out in a straightforward manner following the same 
procedure. The solution of the receptivity problem is given in $3 where it is found that 
the forced Tollmien-Schlichting wave amplitude satisfies a complex wave amplitude 
equation. In the absence of forcing, this equation yields solutions which are the same 
as those of the classical hydrodynamic stability theory. Comparisons between numeri- 
cal results and experiments are carried out in $4. It must be pointed out that, despite 
the extremely careful precautions taken, a very large static pressure gradient existed 
near the leading edge of the flat plate in Shapiro’s experiment. In addition, in the region 
ahead of the lower neutral stable point the flow was subjected to a moderate destabiliz- 
ing pressure gradient. Unfortunately Shapiro did not provide any measured mean 
flow profile in his report to allow this pressure gradient to be taken into consideration 
in the calculation. A Blasius flow is, therefore, assumed in the theory. This difference 
between the theoretical model and the experimental condition must be kept in mind 
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FIQURE 3. Schematic diagram showing boundary-layer flow under the forcing of plane acoustic 
waves propagating in the direction of the free stream. 

when comparing theory with Shapiro's measurements. Overall favourable agree- 
ment is found. In $6, the coupling mechanism between incident sound wave and 
Tollmien-Schlichting wave will be analysed within the framework of the present 
theory. Other interpretation of Shapiro's data will also be discussed and compared with 
the present work. 

2. Formulation 
Consider a flat-plate boundary layer excited by plane sound waves propagating in 

the direction of the free stream as shown in figure 3. The sound wave has a small 
amplitude so that in the free stream it is given by the solution of the linearized com- 
pressible flow equations. Let p, p ,  (u, v)  with subscript i denote the density, pressure 
and velocity components associated with the incident sound wave ; then, by solving 
the linearized equations of motion, it is straightforward to fmd that such a plane 
acoustic wave with frequency B and velocity amplitude u, is given approximately by 

where a, is the speed of sound in the free stream and ill = u,/a, is the flow Mach 
number. In  deriving the expression of equation (2.1) the effect of viscous damping 
which is insignificant in the present context has been ignored. For an incident acoustic 
wave with amplitude us the corresponding velocity, pressure and density fluctuations 
will be equal to B times that given in equation (2.1) where e = us/u,. 

Now consider the boundary-layer flow adjacent to the flat plate. The governing 
compressible flow equations are 

(2.2a) 

(2 .2b)  
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( 2 . 2 4  

In  equation ( 2 . 2 4 ,  the energy equation, heating due to viscous dissipation and thermal 
conduction has been neglected. At low subsonic flows these effects are relatively un- 
important. The boundary conditions on the flat plate are 

y = o ,  u = v = o .  (2.3) 

By means of (2.1) the appropriate boundary conditions far away from the wall are 

Urn + BU~(X, t )  
--f p ,  + epI(x,  t )  +outgoing scattered waves. (2.4) 

y+oo' {;I {p,+Bpi(x,t) I 
The parameter B in equation (2.4), which is the ratio of the maximum sound wave 
velocity to free-stream velocity, is exceedingly small (e.g. in Shapiro's experiment 6 is 
approximately equal to lo-*). It is convenient, therefore, to make use of this fact to 
look for a solution of the mathematical problem consisting of equations (2.2)-(2.4) in 
the form of power series in B, that is, 

u = uo(x, y ) + BUl(X, y, t )  + Bau,  + * . . . (2.6) 

In  this paper attention will be limited to the solution up to order 6 only. By substituting 
(2.5) into equations (2.2)-(2.4) and upon partitioning terms according to powers of 6, 

it is straightforward to show that the zeroth-order terms, uo, vo, po  and pol are just the 
solution of a steady uniform flow past a flat plate. An approximate solution which is 
accurate to order 1/R,, where R, is the Reynolds number based on boundary-layer 
thickness, is the well-known Blasius boundary-layer solution. This solution will be 
used in this paper. Hence we have po = poE, p o  = p ,  and uo(z, y) given by the Blaaius 
velocity profile. Upon ignoring terms of order l/R,, which is part of the generally 
accepted locally parallel flow approximation in hydrodynamic stability theory, the 
governing equations for the first-order quantities (ul, vl, pl, pl)  can be obtained in a 
straightforward manner. The boundary conditions for these first-order quantities are 

y = 0, u1 = v1 = 0; (2.6) 

--f pi(x, t) + outgoing scattered waves. (2.7) 
Ut&, t)  

y-+oo' El 
Thus as indicated by boundary condition (2.7) the boundary-value problem for these 
first-order quantities is inhomogeneous. To facilitate the construction of the first-order 
solution which will describe the acoustic receptivity phenomenon, a change of depen- 
dent variables will be made so that the boundary condition at y + m is homogeneous. 
Let 

(2.8) 
up = U1(2,Y,t)--Ui(%t), v' = VAX,Y,t), 
p p  = PI@, Y, t )  -pi(", t ) ,  PI = P1(", y, t )  -pi(", t ) .  

By subtracting the governing equations of the incident sound wave, (ui, p i ,  pi) from 
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those of (ul, vl, pl, pl), the first-order quantities, it is easy to find that the equations for 
the new variables are 

(2.9b) 

( 2 . 9 ~ )  

The new boundary conditions are 

y = 0, vf = 0, u'(x,o,t) = -u&x,t); (2.10), (2.11) 

(2.12) y + co, solution satisfies boundedness or outgoing wave condition. 

Notice that the inhomogeneous terms of equation (2.9) vanish outside the boundary 
layer. They represent distributed sources throughout the boundary layer which are 
responsible for exciting the Tollmien-Schlichting waves. The inhomogeneous 
boundary-value problem, (2.9)-(2.12), has now been cast into a form typical of most 
wave-scattering problems arising from volume and surface inhomogeneities. This 
mathematical problem will be solved in the next section. 

3. The Green's function and the wave amplitude equation 
To solve the inhomogeneous boundary-value problem (2.9)-( 2.12) the locally parallel 

flow approximation widely used in hydrodynamic stability calculation will be adopted. 
In  this approximation the local growth of the boundary layer is neglected. In other 
words, L = (xu/u,)), the local length scale of the boundary layer, is assumed 
to be a constant. It must be remembered, however, that the inhomogeneous terms of 
equations (2.9) and (2.11) are functions of the streamwise co-ordinate. The overall 
variation of these functions in the free-stream direction should not be ignored. To 
account for this streamwise dependence, we will follow the technique used in our 
previous work (Tam 1978) which consists of first constructing a local Green's function. 
The Green's function satisfies the same inhomogeneous boundary-value problem as 
(2.9)-(2.12) except that the factor exp [ixQ/(a,  + u,)] of the inhomogeneous terms is 
replaced by a delta function. In  terms of dimensionless variables, 

(3.1) 

( L  = (xv/u,)tis the local length scale), the Green's function (denoted by a subscript g) 
is given by the solution of the mathematical problem below: 

I 5 = x/L, ?j = y/L, 7 = tu,/L, G(y )  = uo/u,, 
p = p1/p,u:, u = u'/u,, v = vf/um, 
R = u, Llv, fi = QL/u,, M = u,/a, 



490 C .  K .  W .  Tam 

( 3 . 2 ~ )  

at q = 0, vg = 0 (3.3) 

and ug = - 8 ( ~ -  6) e-iar; (3.4) 

aa g + CQ, the solution satisfies boundedness or radiation condition. (3 .5)  

It can easily be verified that u(E, g,7 )  is related to the Green’s function u&, q, 7 ;  5 )  by 

Also v([,q, 7 )  and vg(& g , 7 ;  6)’ p ( [ , g ,  7 ;  6) and p&, 7’7;  6) are similarly related. Thus 
once the Green’s function is found the local response of the boundary layer to acoustic 
excitation can be readily determined. 

3.1. The Green’sfunction 

Letf(k, w )  be the Fourier-Laplace transform off(& 7) .  These Fourier-Laplace transform 
pairs possess the following integral relationship : 

( 3 . 7 4  

(3.7 b )  

In (3 .7a)  the inverse integration contour r is taken to be a line parallel to the real axis 
in the w-plane above all singularities of the integrand. By taking the Fourier-Laplace 
transform of (3.2)-(3.5) and on eliminating Cg, the equations and boundary conditions 
for @g and fig are 

(5 -)] Hdaii) ( 3 . 8 ~ )  - -u +-- e-ikE 
R dq8 4nqw - 0) ’ 

k 
[ 1 - iM2(w - ;iZk)/R] 
I 

(3.8b) 

at q = 0, Gg = 0 (3.9) 

and (3.10) 

aa q -+ 00, the solution satisfies boundedness or radiation condition. (3.11) 

After pg and gg are found, Cg can be found in terms of those functions through the 
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transform of equation ( 3 . 2 ~ ) .  A system of inhomogeneous ordinary differential 
equations such as equation (3.8) possesses homogeneous and particular solutions. Let 

be two linearly independent homogeneous solutions and 

(3.12) 

(3.13) 

be a particular solution of (3.8) satisfying boundary condition (3.11). Then the solution 
of the inhomogeneous boundary-value problem (3.8)-(3.11) can be written as 

where the constants D and F are determined by using boundary conditions (3.9) and 
(3.10). By meansof (3.14) andthe transformof (3.24 aformulafor$canbeestablished 
after some algebraic manipulations. The denominator of this formula involves a factor 
A(k,  w )  which is given by 

It is noted that A(k,w)  = 0 is the dispersion function of the Tollmien-Schlichting 
waves. Now the Green's function ug(& 7 , ~ ;  6) can be constructed by taking the inverse 
transform of $, namely 

(3.16) 

Equation (3.16) gives the total local response of the boundary layer subjected to 
acoustic excitation. Here we are only interested in the part of the response directly 
related to the Tollmien-Schlichting waves. This arises from certain poles of the ink- 
grand in the w and the k planes. To evaluate the double integral of (3.16) we will follow 
the procedure of Briggs (1964, chap. 2). This procedure has been used by the present 
author in connection with the generation of jet noise by shear-layer instability (Tam 
1971) and the excitation of shear-layer instability waves by sound (Tam 1978). To 
ensure that causality condition is observed, namely, u& q,i; g)+ 0 as T+ - co, the 
inverse contour r is first put in the upper half w-plane with Im(w)+co. This step 
assures that I? is above all singularities of the integrand. Since w is a value of I?, one 

the relative positions of 
Now the contour r is 

4. As a result, the 
In  the case 

depicts the movement 
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on displacement 
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FIQURE 4. Movement of k+(w)  pole as w of r contour is pushed towards the real axis along the 
line Re ( w )  = 0.03905 which corresponds tof = 500 Hz at u, = 29 m s-l, R,. = 1200. (a) w-plane, 
(b) k-plane. 

excited Tollmien-Schlichting wave is given by the residue contributions of the 
pole w = fi in the w-plane and the pole k = k+(fi)  in the k-plane where A(k+(a) ,  a) = 0. 
The unsteady acoustic boundary layer or in the limit of incompressible flow the Stokes 
shear wave which represents a well-known component of the response of the boundary 
layer to the imposed sound wave is given by the remaining part of the integral over the 
deformed contour. Ignoring this contribution to the integrals or keeping only the 
excited Tollmien-Schlichting wave solution it is straightforward to find from (3.16) 
and (3.16) the following formula for the Green's function: 

(3.17) 

where 6, the coupling constant, is a function of M, a and Rb. and a(7, k,, a) is the 
normalized eigenfunction of the Tollmien-Schlichting wave and H(5 - 6 )  is the unit 
step function. They are given by 

q 5 ,  r ,  7; 6) = 4% k+, fi) exp W+(E- 6) - in71 WE-- 0, 

The constant E is chosen so that a(7, k+, fi) satisfies the normalization condition 

j O r n [ a ~ ( l Q P +  l W + * R e ( @ * ) l ~ r  = 1, 

where B* is the complex conjugate of Q. 

(3.20) 
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Let the x-velocity component of the excited Tollmien-Schlichting wave be uTd. This 
quantity, which is measurable experimentally, can be found by substituting (3.21) 
into (2.8) and then into (2.6): 

uT8 = c [ ~ ~ m e x p ~ ~ + i k + ( E - [ ) - i K ~  d{ Q(v,k+,n). (3.22) 
u, l+H 1 1  

In (3.22) u, is the velocity of the incident acoustic wave. We will define the amplitude 
of the excited Tollmien-Schlichting wave, A, by 

uTd = A4(7, k+, K) e-ffir = A$(', k+, n) eat. (3.23) 

In  (3.22) the physical variable which is of special interest to us, is the streamwise 
distribution of wave amplitude A. To determine this amplitude function we will first 
substitute (3.23) into (3.22) and then differentiate the equation with respect to E[. 
Upon dividing out the common factor a(7, k+, a) exp ( -if&), the following equation 
for A can be derived, 

dA /dE = ik+( K) A + uu, ewm(l+x). 

Now, if the co-ordinate vrtriable x is used instead of 5, the desired wave amplitude 
equation which describes the spatial evolution of the Tollmien-Schlichting wave 
amplitude under acoustic forcing is obtained: 

(3.24) 

In (3.24), L = (zv/u,), is the local length scale of the boundary layer. Equation (3.24) 
is one of the principal results of this work. In the absence of sound, that is u, = 0, this 
equation gives the local growth rate of the free Tollmien-Schlichting wave mode. An 
important implication of this wave amplitude equation is that the local growth rate of 
the forced Tollmien-Schlichting wave is not equal to the imaginary p u t  of (k+/L) &B in 
the case of free wave mode. The local growth rates of the free and forced modes are 
approximately equal only when the wave amplitude is very large, that is to say when 
the first term on the right-hand side of (3.24) is much larger than the second term. This 
is consistent with Shapiro's (1977) observations and occurs at large Rd.. The second 
term on the right-hand side of (3.24) is linearly proportional to the amplitude of the 
incident acoustic wave. Clearly it represents a forcing term. It is this term which is 
responsible for the excitation of Tollmien-Schlichting waves in the boundary layer. 
The quantity u is a measure of the strength of interaction between incident acoustic 
wave and excited Tollmien-Schlichting wave. For this reason we have referred to it in 
(3.17) as the coupling constant. 

To find the amplitude of the excited Tollmien-Schlichting wave it is necessary to 
integrate equation (3.24). In hydrodynamic stability theory, the standard practice 
(see Mack 1977) which haa proved to be valid, is to  take into account the variation of 
boundary-layer thickness by treating the coefficients kJL and u/L no longer as 
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constants but as functions of x at this stage. Since these coefficients are usually com- 
puted as functions of Reynolds number R = u,L/v (based on length scale L) or 
R,. = 1.7028R (based on boundary-layer displacement thickness), it  is, therefore, 
more convenient to use R or R,. as the independent variable instead of x. In terms of 
R,, the wave amplitude equation becomes 

(3.25) 

In  (3.25) = Qv/uz is the dimensionless frequency parameter. (3.25) is a first-order 
differential equation. To specify its solution uniquely one initial condition must be 
imposed on A. This initial condition is not provided by the stability analysis. It has to 
be motivated by the physics of the overall problem. The most natural initial condition 
appears to be that which requires the Tollmien-Schlichting wave to start out with 
zero amplitude somewhere near the leading edge of the flat plate, say, at R,. = R,. 
This condition will be adopted in this paper. Mathematically, this is expressed as 

A(R,) = 0. (3.26) 

The solution of (3.25) satisfying (3.26) can easily be found by the method of variation 
of parameters which gives 

xl:*v(z)exp ['1~$(1-~08)2 t -  - -1.162i k + (z')dz' ] dz. (3.27) 

Equation (3.27) provides a complete description of the spatial evolution of the excited 
Tollmien-Schlichting wave amplitude. It will be used to compare with experimental 
measurements in the following section. 

4. Numerical results and comparison with experiment 
At low subsonic Mach number the boundary-layer flow over a flat plate has a Blasius 

velocity profile. This mean velocity profile is used in all the stability calculations of 
this paper. The fist step towards computing the spatial evolution of the amplitude of 
the excited Tollmien-Schlichting wave is to construct the two linearly independent 
homogeneous solutions, (3.12), and the particular solution, (3.13), of equation (3.8) 
numerically. For this purpose, a number of methods have been discussed by various 
authors in the literature. Throughout this work, the method of orthonormalization is 
employed. An excellent exposition of this method was recently given by Scott & Watts 
(1977). By means of orthonormalization, two linearly independent homogeneous 
solutions of equation (3.8) satisfying condition (3.14) were computed by the Runge- 
Kutta-Gill numerical integration algorithm. We started the solutions at a distance of 
8L (L = (zv/u,)B. is the local length scale) from the wall and integrated into the 
boundary layer until the wall was reached. A Newton's iteration scheme was used in 
conjunction with these homogeneous solutions to determine the roots of the dispersion 
function A(k+( n) , a) as given by equation (3.15). These roots are the eigenvalues of the 
Tollmien-Schlichting waves according to the classical normal-mode approach of 
hydrodynamic stability theory. After the root k + ( n )  was found, the normalized eigen- 
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function Q(q, k,, a) and the normalization constant E of (3.19) were computed. The 
particular solution (@8, C8) which is needed in calculating the coupling constant cr by 
equation (3.18) was obtained by numerical integration using the orthonormalization 
procedure. The inhomogeneous terms of (3.8) are zero outside the boundary layer. 
This implies that the starting conditions for the particular solution at a distance 8L 
from the wall should be taken to be identically equal to zero. Up to this point the 
remaining unknown factor required by equation (3.18) is (aA/i%),+,,-. This quantity 
was calculated by the central difference formula 

1 (8) = (A@+ + h, a) - b(k+ - h, a)) + O( hB). 
k t , n  

Equation (4.1) can easily be derived by means of a Taylor series expansion of A(k,  w )  
about (k+, a) where the function is analytic. In our computation h was assigned to be 
half a per cent of Re (k+), This yielded a t  least a three-figure accuracy in the computed 
results. Figure 6 shows the values of the real and imaginary parts of the coupling 
constant a at /3 5 S2v/& p5 66 x lod, M = 0.0845 (or f = 500 Hz and u, = 20 m s-l) 
for various Rd.. As can be seen under these conditions the real part of a is nearly 
constant over the interval 600 Q 6* Q 2000 while the imaginary part of cr increases in 
value by a factor of over 2. For convenience, these values of a were fed into a spline 
curve computer subroutine program which was used extensively in subsequent 
calculations. 
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FIGURE 6. Spatial Variation of calculated wave amplitude. Initial condition A = 0 at R,. = 660. 
1 = Qu/us = 66 x , Tollmien-Schlichting wave mode alone, 
In IuTS/u,I ; ----, including acoustic boundary-layer oscillations, equation (4.2). 

M =uplaw = 0.0846. 

In 93 the initial condition A(R,) = 0, equation (3.26), was adopted in determining 
the spatial distribution of excited Tollmien-Schlichting wave amplitude. The value 
R,. = R, should correspond to a point of the boundary layer close to the leading edge 
of the flat plate. Now it must be remembered that the boundary-layer theory which 
provides the mean flow profile in all our calculation breaks down close to the leading 
edge of the plate. In  addition, the locally parallel flow approximation employed in our 
stability analysis would certainly be violated in regions very close to $he leading edge 
of the plate. With these constraints in mind we set R, equal to 650, which a t  /? = 66 
x 10" corresponds to a point sufficiently far ahead of the lower branch of the neutral 
stability boundary and at  the same time is not too close to the leading edge of the flat 
plate as to invalidate the assumptions of the theory. We feel that this choice is reaon- 
able. If R,is chosen to be somewhat larger than 650, this change in R, does not seem to 
have a significant influence on the calculated results. With R,, = 650 the integrals of 
equation (3.30) were evaluated numerically. The results are shown in figures 6 and 7. 
In figure 6 the solid curve gives the logarithm of the absolute value of uT8/u8 (maxi- 
mized over 7 )  as a function of R8.. It is seen that the amplitude, starting from zero at 
R,, rises rapidly at first and then undergoes spatial oscillations with wavelength equal 
to that of the local Tollmien-Schlichting wave. Over the region ahead of the lower 
branch neutral stable point the spatial average of the amplitude of the excited wave is 
practically a constant. Downstream of the neutral stable boundary the wave amplitude 
grows steadily. Small superimposed oscillations can, however, be easily seen. Experi- 
mentally, the measured velocity fluctuation, urnemured, consists of not only that of the 
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8. 

FIQURL i .  Spatial variation of calculated phase of wave relative to the phase 
wave at the leading edge of flat plate. , Tollmien-Schlichting wave 
including acoustic boundary-layer oscillations. 

of incident sound 
alone; ----, 

Tollmien-Schlichting wave alone. Principally, it is the sum of the excited Tollmien- 
Schlichting wave and the velocity oscillations of the acoustic boundary layer. At low 
subsonic Mach number it is given approximately by 

where IuTs(7, k,, a)] attains its maximum value at 7 = 7.The second term on the right- 
hand side of (4.2) comes from the acoustic wave. The logarithm of this quantity as a 
function of RJ8 is shown as the dotted curve in figure 6. Notice that the two curves in 
this figure look qualitatively alike and show striking resemblance to the measured 
data of Shapiro (1977) in figure 1. Further, in the region ahead of the neutral stable 
point the averaged value of 1 U , , ~ , ~ ~ , ~ / U ~ I  of the present calculation is approximately 
equal to unity. This is also equal to Shapiro's measured value (note: in figure 1 uTs0 is 
equal to us according to Shapiro) indicating that the predicted coupling constant r~ is, 
a t  least, of the right order of magnitude. Figure 7 shows the phase of uTS(RI8,y) /uS 
and uTS/us+ exp [ i [ p M / (  1 + M ) ]  (RJ8/1'7208)2 - iQt] ,  the measured phase of velocity 
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fluctuation in the boundary layer, as R,, varies. Again these quantities exhibit spatial 
oscillations in the regions ahead of the neutral stable point with wavelength equal to 
the local Tollmien-Schlichting wave. This feature is qualitatively the same as that 
shown in figure 2. The agreement is, however, not as good as that of the absolute 
amplitude since the calculated phase displays a secular linear increase. 

In connection with comparing the present theoretical results with experimental 
measurements it must be pointed out that despite the extreme precautions taken by 
Shapiro his data is not completely free of ambiguities. As was mentioned before a large 
pressure gradient existed near the leading edge of his plate. Also a somewhat mild but 
unfavourable pressure gradient persisted over the region ahead of the neutral stable 
point of his flat-plate boundary layer. In addition, there were still a substantial 
amount of residual noise, turbulence and vibrations in his wind tunnel so that even in 
his excited case the input disturbance did not consist of sound wave alone. The point 
here is that receptivity experiments are extremely difficult to perform. In the absence 
of a set of definitive measurements by which a complete quantitative verification of 
the theory can be carried out, we believe that the similarities which exist between 
figures 1 and 6,2  and 7 do suggest some fairly general agreement between the calculated 
results and experimental data. Of course, to draw any firm conclusion on the basia of 
qualitative agreement alone can be mislertding. It is worth while to point out, however, 
that there is one qualitative difference between figures 1 and 6 for small R,*. In figure 6 
the theoretical curve indicates a slow decay of the average wave amplitude while the 
experimental curve in figure 1 shows a more or less constant value. One possible reason 
for this difference is the mild pressure gradient which existed in Shapiro’s experiment. 
This unfavourable pressure gradient tends to destabilize the flow and if accounted for 
will probably eliminate the small decay of the calculated results. In addition the non- 
parallel flow effect which has not been included in the present work will also make the 
boundary layer slightly less stable in this region. It is believed that when all these 
secondary flow effects are considered the difference can be reconciled. 

5. Discussion 
The mathematical formulation of the receptivity problem described in this paper ia 

applicable not only to acoustic inputs but to other types of free-stream disturbances 
such as turbulence and entropy spots aa well. For the caae of Tollmien-Schlichting 
waves driven by free-stream turbulence (represented by three-dimensional vorticity 
waves) in an incompressible boundary layer, the procedure outlined in 8 2 leads to the 
following inhomogeneous boundary-value problem : 

The boundary condition at  y + 00 is 
2 1 ’ 3  0. 

The boundary conditions at y = 0 are 
avi av, 

21‘ = - vt(x, o,z,  t ) ,  - = -- (2,0,X,t) .  
aY ay 

It is to be noted that in this special problem the inhomogeneous terms depend only on 
v,, the y-velocity component of the free-stream incident vorticity waves alone. That is 
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to say, free-stream turbulence can excite unstable Tollmien-Schlichting waves of the 
boundary layer only through il+ velocity component in the direction normal to the 
plate. The streamwise and laterarvelocity components have no influence at all. Thia is a 
rather unexpected and remarkable result. It is unexpected because clearly in the 
acoustic receptivity problem the Tollmien-Schlichting wave is driven by the stream- 
wise velocity component of the input sound wave (in the numerical solution the 
wavelength of sound is so much larger than that of the Tollmien-Schlichting waves that 
the excitation is effectively caused by fkee-stream longitudinal velocity oscillations; 
compressibility effect of the sound waves is unimportant). It is, therefore, natural to 
expect that the streamwise velocity fluctuations of free-stream turbulence (vorticity 
waves) should have, at least, some effect in exciting these waves. It is remarkable be- 
cause the result is so clear-cut and simple that it can easily be tested experimentally. If 
one uses the wake of a long vibrating ribbon as a source of free-stream turbulence then 
the vorticity waves generated would have velocity components mainly in the plane 
normal to the axis of the ribbon. In other words, the vorticity waves are nearly two- 
dimensional. Now, when such a vibrating ribbon is introduced ahead of a flat plate 
so that its wake interacts with the boundary layer, two distinctly different conditions 
can be created. By aligning the axis of the ribbon normal to the plate, the c a w  of 
boundary-layer flow excited by vorticity waves with negligible velocity component in 
the normal direction is produced experimentally. On the other hand, by rotating the 
axis of the ribbon by 90' so that it is parallel to the leading edge of the plate, one finds 
that the boundary layer is now subjected to free-stream vorticity wave excitation 
with a substantial velocity component in the normal direction. Notice that in both 
caaes there are streamwise velocity fluctuations in the free stream. Such an experiment 
was carried out by Kachanov, Kozlov & Levchenko (1978). It was observed that, 
indeed, when the axis of the vibrating ribbon was normal to the plate little Tolmien- 
Schlichting wave WM detected in the boundary layer, whereas when the axis of the 
vibrating ribbon waa parallel to the leading edge of the plate Tollmien-Schlichting 
waves were unambiguously found in the boundary-layer flow. Although, again as in 
the case of acoustic excitation, it is difEcult to verify the theory by direct quantitative 
comparison with experiment at this time (not enough data) yet the agreement between 
experiment and theory on such a remarkable and unexpected result should not be 
dismissed lightly. On the contrary, we believe that it does lend strong support to 
the validity of the present theoretical approach. 

Now let us examine the amplitude equation (3.24) again to try to understand in 
physical terms how Tollmien-Schlichting waves are generated. It ia useful here to 
compare the present situation to that of a vibrating system under the wtion of external 
forces. Equation (3.24) is a first-order inhomogeneous ordinary differential equation. 
As is well known the solution can be regarded as consisting of a particular solution 
and a homogeneous solution. The former is equivalent to the steady oscillatory 
solution of a forced vibrating system and the latter is equivalent to the transient solu- 
tion of the same system. Clearly the homogeneous solution of (3.24) is the classical 
propagating Tollmien-Schlichting wave mode. The particular solution ia a new 
element introduced in this work. To find an approximate particular solution to (3.24) 
at low Mach number we note that the two coefficients 

(au,/L) exp [ iMSh/(  1 +M) u,] and ik+/L 
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are slowly varying functions of z. If these coefficients me independent of 5 then the 
particular solution is given by the ratio of these coefficients which again is independent 
of 2. Thus we see that the particular solution represents a form of long-wave oscillations 
of the whole boundary layer. The amplitude of these oscillations varies very slowly 
in the streamwise direction. The propagating Tollmien-Schlichting wave mode (homo- 
geneous solution) and the forced Tollmien-Schlichting oscillation (particular solution) 
are related by initial condition (3.26). This is analogous to the situation of the forced 
vibrating system where the transient oscillations and forced oscillations are coupled 
by the initial condition. In this way we see that the forced Tollmien-Schlichting wave 
oscillation is crucial to the generation of the propagating wave mode. Slightly down- 
stream of the initial point R,. = R,, the superposition of the long-wave mode (particular 
solution) with nearly constant amplitude and that of the propagating mode (homo- 
geneous solution) produces the characteristic spatial amplitude oscillations shown in 
figure 6. This feature is unchanged by the inclusion of the incident acoustic wave. 
For this merely amounts to a small change in the nearly constant amplitude of the 
Tollmien-Schlichting long-wave mode (particular solution). Finally as the propagating 
Tollmien-Schlichting wave mode increases in amplitude over the unstable region the 
amplitude of the Tollmien-Schlichting long-wave mode becomes less and lees signifi- 
cant. The overall wave phenomenon, therefore, eventually resembles more and more 
the characteristics of the classical Tollmien-Schlichting wave as illustrated in figure 6. 

In a recent paper, Thomas & Lekoudis (1978) examined Shapiro’s data aa shown in 
figures 1 and 2. They presented calculations of the amplitude and phaaea of a wave 
pattern consisting of a sound wave and a free Tollmien-Schlichting wave, both of the 
same frequency, propagating independently. In these calculations the amplitude of the 
Tollmien-Schlichting wave was assumed to be equal to that of the sound wave at 
R,. = 660 and that there was no phase difference between the two waves at this point. 
Their computed results, not surprisingly aa mentioned above, exhibited character- 
istic features very similar to those of figures 1 and 2 as well as the present calculated 
results in figures 6 and 7. Relying on this qualitative agreement alone, they 
concluded that there waa no interaction between the sound wave and Tollmien- 
Schlichting wave in the boundary layer except possibly at  the stagnation point near 
the leading edge of the plate. In view of our calculated results shown in figures 6 and 7 
it is clear that these characteristic spatial amplitude oscillations can also be produced 
by continuous interaction between the sound and Tollmien-Schlichting waves. There 
is therefore no basis for their conclusion. Had their proposal of ‘no interaction’ been 
meant to refer to the lack of generation of propagating Tollmien-Schlichting wave 
mode instead, it would have been correct to a large extent as discussed in the preceding 
paragraph. However, in this c&8e the conclusion is justified not by their calculation but 
by the present theory. 

To conclude, we have presented in this paper a mathematical theory on the recep- 
tivity of sound by laminar boundary layer. The calculated results are found to be in 
fair agreement with all the fragmentary experimental data currently available. Further 
comparisons between theoretical results and experiment are required in order to 
demonstrate its complete validity. To this end, it is obvious that a good deal of high- 
quality experimental measurements is desperately needed at this time. 
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